Topological Data Analysis

Complexes \& Data

Ulderico Fugacci
CNR - IMATI

Topological Data Analysis

Complexes \& Data

Goal:

We want to associate a topological structure to a given dataset

Data

Shape

Due to the nature of data and to our computational ambitions, datasets will be represented by "discrete" structures

Among various possibilities, simplicial complexes represent the most suitable choice

In fact, simplicial complexes are able to deal with data:

* of large size (e.g. consisting of a huge number of samples)
* of high dimension (e.g. involving a large number of variables or parameters)
* unorganized (e.g. not arranged in a regular grid)

Complexes \& Data

- Simplicial Complexes (and other discrete representations)
- From Data to Complexes

Complexes \& Data

- Simplicial Complexes (and other discrete representations)
* From Data to Complexes

Simplicial Complexes

Definitions:

A set $V:=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ of points in \mathbb{R}^{n} is called
 geometrically independent if vectors $\mathrm{v}_{1}-\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}-\mathrm{v}_{0}$ are linearly independent over \mathbb{R}
E.g. two distinct points, three non-collinear points, four non-coplanar points

The \boldsymbol{k}-simplex $\sigma=\boldsymbol{v}_{0} \boldsymbol{v}_{1} \ldots \boldsymbol{v}_{k}$ spanned by a geometrically independent set $\mathrm{V}=\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right\}$ of in \mathbb{R}^{n} is the convex hull of V, i.e. the set of all points $x \in \mathbb{R}^{n}$ such that

$$
x=\sum_{i=0}^{k} t_{i} v_{i} \text { where } \sum_{i=0}^{k} t_{i}=1 \quad \text { and } \mathrm{t}_{\mathrm{i}} \geq 0 \text { for all } \mathrm{i}
$$

The numbers t_{i} are uniquely determined by x and are called barycentric coordinates of x E.g. a 0 -simplex is a vertex, a 1 -simplex is an edge, a 2 -simplex is a triangle, a 3 -simplex is a tetrahedron

Simplicial Complexes

Definitions:

+ The points $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ spanning a k -simplex σ are called the vertices of σ
* k is called the dimension of σ and denoted as $\operatorname{dim}(\sigma)$
- Any simplex τ spanned by a non-empty subset of V is called a face of σ
+ Conversely, σ is called a coface of τ

Simplicial Complexes

Definition:

A (geometric) simplicial complex K in \mathbb{R}^{n} is a collection of simplices in \mathbb{R}^{n} such that

* Every face of a simplex of K is in K
* The non-empty intersection of any two simplices of K is a face of each of them

simplicial complex

non-simplicial complex

Simplicial Complexes

Definitions:

Given a (geometric) simplicial complex K in \mathbb{R}^{n},

* The dimension of a simplicial complex K in \mathbb{R}^{n}, denoted as $\operatorname{dim}(K)$, is the supremum of the dimensions of the simplices of K

* A simplex σ of K such that $\operatorname{dim}(\sigma)=\operatorname{dim}(\mathrm{K})$ is called maximal
* A simplex σ of K which is not a proper face of any simplex of K is called top
* A subcollection of K that is itself a simplicial complex is called a subcomplex of K

Simplicial Complexes

Definitions:

Given a simplex σ of a (geometric) simplicial complex K in \mathbb{R}^{n},

* The star of σ is the set $\operatorname{St}(\sigma)$ of the cofaces of σ
* The link of σ is the set $L k(\sigma)$ of the faces of the simplices in $\operatorname{St}(\sigma)$ such that do not intersect σ

Simplicial Complexes

Definitions:

Given a simplex σ of a (geometric) simplicial complex K in \mathbb{R}^{n},

* The star of σ is the set $\operatorname{St}(\sigma)$ of the cofaces of σ
* The link of σ is the set $L k(\sigma)$ of the faces of the simplices in $\operatorname{St}(\sigma)$ such that do not intersect σ

Simplicial Complexes

Given a (geometric) simplicial complex K in \mathbb{R}^{n}, its polytope $|K|$ is the subset of \mathbb{R}^{n} defined as the union of the simplices of K

The polytope $|K|$ can be endowed with two possible topologies T_{1} and T_{2} :

* T_{1} : A subset F of $|K|$ is a closed set of $\left(|K|, T_{1}\right)$ if and only if $F \cap \sigma$ is a closed set of $\left(\sigma, \mathrm{T}_{\sigma}\right)$ for each σ in K where T_{σ} is the subspace topology induced on σ by \mathbb{E}^{n}
${ }^{*} T_{2}$: The subspace topology induced on $|K|$ by \mathbb{E}^{n}

In general, the two topologies T_{1}, T_{2} are different, but
Proposition: If K is a finite simplicial complex, $T_{1}=T_{2}$
From now on, if not differently specified, we consider only finite simplicial complexes

Simplicial Complexes

Proposition:

Given a simplicial complex K and a topological space (X, T), a function from (|K|, T_{1}) to (X, T) is continuous if and only if $\left.f\right|_{\sigma}$ is continuous for each $\sigma \in K$

Definition:

Given two simplicial complexes K and K^{\prime},

- A function $\mathrm{f}: \mathrm{K} \longrightarrow \mathrm{K}^{\prime}$ is called a simplicial map if for every simplex $\sigma=\mathrm{v}_{0} \mathrm{~V}_{1} \ldots \mathrm{~V}_{\mathrm{k}}$ in K , $f(\sigma)=f\left(v_{0}\right) f\left(v_{1}\right) \ldots f\left(v_{k}\right)$ is a simplex in K^{\prime}
* The restriction f_{v} of f to the set of vertices V of K is called the vertex map of f

Simplicial Complexes

Definition:

An abstract simplicial complex K on a set V is a collection of finite non-empty subsets of V , called simplices, such that if $\sigma \in \mathrm{K}$ and $\boldsymbol{\tau} \subseteq \sigma$, then $\boldsymbol{\tau} \in \mathrm{K}$

Analogously to the case of a geometric simplicial complex,

* The elements of V are called vertices of K
* The dimension of a simplex σ is one less than the number of its elements
* The supremum of the dimensions of the simplices in K is called dimension of K
* Each non-empty subset τ of a simplex $\sigma \in \mathrm{K}$ is called a face of σ and σ is called a coface of τ

The notions of geometric simplicial complex and abstract simplicial complex are equivalent. More properly, it is always possible,

* Given an abstract simplicial complex, to endow it with a geometric realization
* Given a geometric simplicial complex, to forget its geometry thus obtaining an abstract simplicial complex

Simplicial Complexes

Definition: A simplicial complex K is called

* n-manifold [with boundary] if its polytope $|\mathrm{K}|$ is a (topological) n-manifold [with boundary]
* Combinatorial n-manifold [with boundary] if, for every vertex v, the link Lk(v) is homeomorphic to the ($n-1$)-sphere S^{n-1} [or to the ($n-1$)-disk $\left.D^{n-1}:=\left\{x \in \mathbb{R}^{n-1}:|x| \leq 1\right\}\right]$

If K is a combinatorial n-manifold [with boundary], then K is a n-manifold [with boundary]
The converse is:
True for $n \leq 3$
Open for $n=4$
False for $n>4$

Regular Grids

Hyper-Cube:

A \boldsymbol{k}-hyper-cube $\boldsymbol{\eta}$ is the Cartesian product of k closed intervals of equal length

Regular Grids:

A regular grid H is a (finite) collection of hyper-cubes such that:

* Each face of a hyper-cube of H is in H
* Each non-empty intersection of two hyper-cubes in H is a face of both
* The domain of H is a hyper-cube

Cell Complexes

Intuitively:

Similarly to simplicial complexes and regular grids,

> A cell complex 「 is a collection of cells "suitably glued together"

Where a k-cell is a topological space homeomorphic to the k-dimensional open disk $i\left(D^{k}\right)$

Complexes \& Data

- Simplicial Complexes (and other discrete representations)
* From Data to Complexes

From Data to Complexes

Let us consider a dataset represented by a finite point cloud V in \mathbb{R}^{n}

Studying the shape of V just by considering the space consisting of its points does not provide any relevant topological information

The "real" shape of the dataset can be captured by properly constructing a complex connecting together close points through simplices

From Data to Complexes

Standard Constructions:

A number of possible choices have been introduced in the literature:

+ Delaunay triangulations
* Voronoi diagrams
+ Čech complexes
* Vietoris-Rips complexes
+ Alpha-shapes
* Witness complexes

Most of the above constructions are based on the notion of Nerve complex

From Data to Complexes

A First Classification:

Given a finite point cloud V in \mathbb{R}^{n},
$\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Delaunay } \\ \text { triangulation }\end{array} & \text { Geometric } & n & \text { Ximension }\end{array} \begin{array}{c}\text { Dependence on a } \\ \text { Parameter }\end{array}\right]$

Nerve Complexes

Definition:

Given a finite collection S of sets in \mathbb{R}^{n},
The nerve $\operatorname{Nrv}(S)$ of S is the abstract simplicial complex generated by the non-empty common intersections

Formally,

$$
\operatorname{Nrv}(S):=\left\{\sigma \subseteq S \mid \bigcap_{s \in \sigma} s \neq \emptyset\right\}
$$

Nerve Complexes

Definition:

Given a finite collection S of sets in \mathbb{R}^{n},
The nerve $\operatorname{Nrv}(S)$ of S is the abstract simplicial complex generated by the non-empty common intersections

Formally,

$$
\operatorname{Nrv}(S):=\left\{\sigma \subseteq S \mid \bigcap_{s \in \sigma} s \neq \emptyset\right\}
$$

Nerve Complexes

Nerve Theorem:

If S is a finite collection of convex sets in \mathbb{R}^{n}, then the nerve of S and the union of the sets in S are homotopy equivalent (and so they have the same homology)

Nerve Complexes

Nerve Theorem can be generalized by replacing the convexity of sets in S with the request that all non-empty common intersections are contractible (i.e. that can be continuously shrunk to a point)

Original Nerve Theorem:

If S is an open cover of a (para)compact space X such that every non-empty intersection of finitely many sets in S is contractible, then X is homotopy equivalent to the nerve $\operatorname{Nrv(S)}$

Delaunay Triangulations

Given a finite point cloud V in \mathbb{R}^{n},
The Delaunay triangulation of V is a classic notion in Computational Geometry:

* Producing a "nice" triangulation of V
* free of long and skinny triangles
* Named after Boris Delaunay for his work on this topic from 1934
* Originally defined for sets of points in \mathbb{R}^{2} but generalizable to arbitrary dimensions

Delaunay Triangulations

Definitions:

Given a finite point cloud V in \mathbb{R}^{2},

* The convex hull of V is the smallest convex subset $C H(V)$ of \mathbb{R}^{2} containing all the points of V

- A triangulation of V is A 2-dimensional simplicial complex \boldsymbol{K} such that:
* The domain of K is $\mathrm{CH}(\mathrm{V})$
* The 0 -simplices of K are the points in V

Delaunay Triangulations

Definition:

A Delaunay triangulation is a triangulation $\operatorname{Del}(\mathrm{V})$ of V such that: the circumcircle of any triangle does not contain any point of V in its interior

Delaunay Triangulations

Definition:

A finite set of points V in \mathbb{R}^{n} is in general position if no $n+2$ of the points lie on a common ($n-1$)-sphere
E.g. , for $\boldsymbol{n}=\mathbf{2}$,
V in general
position

No four or more points are co-circular

Theorem:

If V is in general position, then $\operatorname{Del}(V)$ is unique

Delaunay Triangulations

Definitions:

The Voronoi region of u in V is the set of points of \mathbb{R}^{2} for which u is the closest

$$
R_{V}(u):=\left\{x \in \mathbb{R}^{2} \mid \forall v \in V, d(x, u) \leq d(x, v)\right\}
$$

* Any Voronoi region is a convex closed subset of \mathbb{R}^{2}

4 A Voronoi region is not necessarily bounded

The Voronoi diagram is the collection $\operatorname{Vor}(V)$ of the Voronoi regions of the points of \vee

Delaunay Triangulations

Duality Property:

If V is in general position, then
the Delaunay triangulation coincides with the nerve of the Voronoi diagram

$$
\operatorname{Del}(V)=\left\{\sigma \subseteq V \mid \bigcap R_{V}(u) \neq \emptyset\right\}
$$

$$
u \in \sigma
$$

* Each point u of V corresponds to a Voronoi region Rv(u)
* Each triangle t of $\operatorname{Del}(V)$ correspond to a vertex in $\operatorname{Vor}(V)$
* Each edge $e=(u, v)$ in $\operatorname{Del}(V)$ corresponds to an edge shared by the two Voronoi regions $R_{V}(u)$ and $R_{V}(v)$

Delaunay Triangulations

Algorithms:

+ Two-step algorithms:
* Computation of an arbitrary triangulation K^{\prime}
* Optimization of K^{\prime} to produce a Delaunay triangulation
+ Incremental algorithms [Guibas, Stolfi 1983; Watson 1981]:
* Modification of an existing Delaunay triangulation while adding a new vertex at a time
+ Divide-and-conquer algorithms [Shamos 1978; Lee, Schacter 1980]:
* Recursive partition of the point set into two halves
* Merging of the computed partial solutions
+ Sweep-line algorithms [Fortune 1989]:
* Step-wise construction of a Delaunay triangulation while moving a sweep-line in the plane

Delaunay Triangulations

Watson's Algorithm:

A Delaunay triangulation is computed by incrementally adding a single point to an existing Delaunay triangulation

Let V_{i} be a subset of V and let u be a point in $V \backslash V_{i}$,

Input:

$\operatorname{Del}\left(\mathrm{V}_{\mathrm{i}}\right)$, a Delaunay triangulation of V_{i}

Output:

$\operatorname{Del}\left(\mathbf{V}_{\mathrm{i}+1}\right)$, a Delaunay triangulation of $\mathbf{V}_{\mathrm{i}+1}:=\mathrm{V}_{\mathrm{i}} \cup\{\mathbf{u}\}$

Delaunay Triangulations

Watson's Algorithm:

Given a Delaunay triangulation $\operatorname{Del}\left(V_{i}\right)$ of V_{i} and a point u in $V \backslash V_{i}$,

* The influence region R_{u} of a point u is the region in the plane formed by the union of the triangles in Del(V_{i}) whose circumcircle contains u in its interior
* The influence polygon P_{u} of u is the polygon formed by the edges of the triangles of $\operatorname{Del}\left(V_{i}\right)$ which bound R_{u}

Delaunay Triangulations

Watson's Algorithm:

- Step 1:

Deletion of the triangles of $\operatorname{Del}\left(\mathrm{V}_{\mathrm{i}}\right)$ forming the influence region R_{u}

+ Step 2:
Re-triangulation of R_{u} by joining u to the vertices of the influence polygon P_{u}

Delaunay Triangulations

Watson's Algorithm:

Let $N_{i}=\left|\mathrm{V}_{\mathrm{i}}\right|$

* Detection of a triangle of $\operatorname{Del}\left(V_{i}\right)$ containing the new point $u: O\left(N_{i}\right)$ in the worst case
* Detection of the triangles forming the region of influence through a breadth-first search: O(|Rul)
* Re-triangulation of P_{u} is in $O\left(\left|P_{u}\right|\right)$
* Inserting a point u in a triangulation with N_{i} vertices: $O\left(N_{i}\right)$ in the worst case
* Inserting all points of $\mathrm{V}: O\left(\mathrm{~N}^{2}\right)$ in the worst case, where $\mathrm{N}=|\mathrm{V}|$

Čech Complexes

Definition:

Given a finite set of points V in \mathbb{R}^{n}, let us consider:

Čech Complexes

Definition:

Given a finite set of points V in \mathbb{R}^{n}, let us consider:

* $B_{u}(r)$, the closed ball with center $u \in V$ and radius r
* S, the collection of these balls

Čech Complexes

Definition:

Given a finite set of points V in \mathbb{R}^{n}, let us consider:

* $B_{u}(r)$, the closed ball with center $u \in V$ and radius r
* S, the collection of these balls

The Čech complex Čech(r) of V of radius r is the nerve of S

$$
\check{C} \operatorname{ech}(r):=\left\{\sigma \subseteq V \mid \bigcap_{u \in \sigma} B_{u}(r) \neq \emptyset\right\}
$$

Čech Complexes

Definition:

Given a finite set of points V in \mathbb{R}^{n}, let us consider:

* $B_{u}(r)$, the closed ball with center $u \in V$ and radius r
* S, the collection of these balls

The Čech complex Čech(r) of V of radius r is the nerve of S

$$
\check{C} e c h(r):=\left\{\sigma \subseteq V \mid \bigcap_{u \in \sigma} B_{u}(r) \neq \emptyset\right\}
$$

Čech Complexes

Definition:

Given a finite set of points V in \mathbb{R}^{n}, let us consider:

* $B_{u}(r)$, the closed ball with center $u \in V$ and radius r
* S, the collection of these balls

The Čech complex Čech(r) of V of radius r is the nerve of S

$$
\check{C} e c h(r):=\left\{\sigma \subseteq V \mid \bigcap_{u \in \sigma} B_{u}(r) \neq \emptyset\right\}
$$

In practice, infeasible construction

Vietoris-Rips Complexes

Definition:

Given a finite set of points V in \mathbb{R}^{n},

The Vietoris-Rips complex $V R(r)$ of V and r is the abstract simplicial complex consisting of all subsets of diameter at most $2 r$

Formally,

$$
V R(r):=\{\sigma \subseteq V \mid d(u, v) \leq 2 r, \forall u, v \in \sigma\}
$$

Vietoris-Rips Complexes

Properties:

- $\check{C} e c h(r) \subseteq V R(r) \subseteq \check{C} e c h(\sqrt{2} r)$

Vietoris-Rips Complexes

Properties:

- $\check{C} e c h(r) \subseteq V R(r) \subseteq \check{C} e c h(\sqrt{2} r)$
* VR(r) is completely determined by its 1-skeleton
* I.e. the graph G of its vertices and its edges

Vietoris-Rips Complexes

Algorithms:

Input: $\quad \mathrm{A}$ finite set of points V in \mathbb{R}^{n} and a real positive number r
Output: The Vietoris-Rips complex VR(r)
A two-step approach is typically adopted:

+ Step 1 - Skeleton Computation:
* Exact ($\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ time complexity)
* Approximate
* Randomized
* Landmarking
* Step 2 - Vietoris-Rips Expansion:
* Inductive
* Incremental
* Maximal

Vietoris-Rips Complexes

Algorithms:

Input: $\quad \mathrm{A}$ finite set of points V in \mathbb{R}^{n} and a real positive number r
Output: The Vietoris-Rips complex VR(r)
A two-step approach is typically adopted:

+ Step 1 - Skeleton Computation:
* Exact ($\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ time complexity)
* Approximate
* Randomized
* Landmarking
* Step 2 - Vietoris-Rips Expansion:
* Inductive
* Incremental

* Maximal

Vietoris-Rips Complexes

Inductive VR expansion:

Input: \quad The 1-skeleton $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of $\mathrm{VR}(\mathrm{r})$
Output: The k-skeleton K of the Vietoris-Rips complex VR(r)
INDUCTIVE-VR(G, k)

$$
K=V \cup E
$$

for $i=1$ to k foreach i-simplex $\sigma \in K$ $N=\cap_{u \in \sigma} \operatorname{LOWER}-\operatorname{NBRS}(G, u)$ foreach $v \in N$

$$
K=K \cup\{\sigma \cup\{v\}\}
$$

return K
LOWER-NBRS(G, u) return $\{v \in V \mid v<u,(u, v) \in E\}$

Vietoris-Rips Complexes

Inductive VR expansion:

Input: \quad The 1-skeleton $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of $\mathrm{VR}(\mathrm{r})$
Output: The k-skeleton K of the Vietoris-Rips complex VR(r)
INDUCTIVE-VR(G, k)
$K=V \cup E$
for $i=1$ to k foreach i-simplex $\sigma \in K$

$$
N=\cap_{u \in \sigma} \operatorname{LOWER-NBRS}(G, u)
$$ foreach $v \in N$

$$
K=K \cup\{\sigma \cup\{v\}\}
$$

return K
LOWER-NBRS(G, u) return $\{v \in V \mid v<u,(u, v) \in E\}$

$$
\sigma=(1,2)
$$

$$
N=\{ \}
$$

Vietoris-Rips Complexes

Inductive VR expansion:

Input: \quad The 1-skeleton $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of $\mathrm{VR}(\mathrm{r})$
Output: The k-skeleton K of the Vietoris-Rips complex VR(r)
INDUCTIVE-VR(G, k)
$K=V \cup E$
for $i=1$ to k foreach i-simplex $\sigma \in K$

$$
N=\cap_{u \in \sigma} L O W E R-N B R S(G, u)
$$ foreach $v \in N$

$$
K=K \cup\{\sigma \cup\{v\}\}
$$

$$
N=\{1\}
$$

return K
LOWER-NBRS(G, u) return $\{v \in V \mid v<u,(u, v) \in E\}$

$$
\sigma=(2,3)
$$

Vietoris-Rips Complexes

Inductive VR expansion:

Input: \quad The 1-skeleton $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of $\mathrm{VR}(\mathrm{r})$
Output: The k-skeleton K of the Vietoris-Rips complex VR(r)
INDUCTIVE-VR(G, k)

$$
K=V \cup E
$$

for $i=1$ to k foreach i-simplex $\sigma \in K$ $N=\cap_{u \in \sigma} \operatorname{LOWER}-\operatorname{NBRS}(G, u)$ foreach $v \in N$

$$
K=K \cup\{\sigma \cup\{v\}\}
$$

return K
LOWER-NBRS(G, u) return $\{v \in V \mid v<u,(u, v) \in E\}$

Vietoris-Rips Complexes

Inductive VR expansion:

Input: \quad The 1-skeleton $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of $\mathrm{VR}(\mathrm{r})$
Output: The k-skeleton K of the Vietoris-Rips complex VR(r)
INDUCTIVE-VR(G, k)
$K=V \cup E$
for $i=1$ to k foreach i-simplex $\sigma \in K$

$$
N=\cap_{u \in \sigma} L O W E R-N B R S(G, u)
$$ foreach $v \in N$

$$
K=K \cup\{\sigma \cup\{v\}\}
$$

$$
N=\{1\}
$$

return K
LOWER-NBRS(G, u) return $\{v \in V \mid v<u,(u, v) \in E\}$

$$
\sigma=(3,4)
$$

Vietoris-Rips Complexes

Inductive VR expansion:

Input: \quad The 1-skeleton $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of $\mathrm{VR}(\mathrm{r})$
Output: The k-skeleton K of the Vietoris-Rips complex VR(r)
INDUCTIVE-VR(G, k)

$$
K=V \cup E
$$

for $i=1$ to k foreach i-simplex $\sigma \in K$

$$
N=\cap_{u \in \sigma} L O W E R-N B R S(G, u)
$$ foreach $v \in N$

$$
K=K \cup\{\sigma \cup\{v\}\}
$$

return K
LOWER-NBRS(G, u) return $\{v \in V \mid v<u,(u, v) \in E\}$

From Data to Complexes

Alpha-Shapes

Definition:

Given a finite set of points V in general position of \mathbb{R}^{n}, let us consider:

* $A_{u}(r):=B_{u}(r) \cap R_{v}(u)$, the intersection of the closed ball with center $u \in V$ and radius r and the Voronoi region of u
* S, the collection of these convex sets

The alpha-shape Alpha(r) of V of radius r is the nerve of S

Formally,

$$
\text { Alpha(r) }:=\left\{\sigma \subseteq V \mid \bigcap_{u \in \sigma} A_{u}(r) \neq \emptyset\right\}
$$

$A_{u}(r) \subseteq B_{u}(r) \square A l p h a(r) \subseteq \check{C} e c h(r)$

Witness Complexes

Motivation:

The "shape" of a point cloud can be captured without considering all the input points

Definitions:

+ Landmarks:
Selected points
* Witnesses:

Remaining points

Witness Complexes

Definition:

The witness complex $W(r)$ of radius r is defined by:

+ u is in $W(r)$ if u is a landmark
* (u, v) is in $W(r)$ if there exists a witness w such that

$$
\max \{d(u, w), d(v, w)\} \leq m_{w}+r
$$

where $m_{w}:=$ the distance of w from the 2nd closest landmark
\uparrow the i-simplex σ is in $W(r)$ if all its edges belong to $W(r)$
$W_{o}(r)$ is defined by setting $m_{w}=0$ for any witness w

$$
W_{0}(r) \subseteq V R(r) \subseteq W_{0}(2 r)
$$

From Data to Complexes

Not Only Point Clouds in \mathbb{R}^{n}

Most of the presented constructions can be generalized/adapted to the case of a finite collection of elements endowed with a notion of proximity* enabling to cover a wide plethora of datasets
*More properly, a semi-metric, i.e. a distance not necessarily satisfying the triangle inequality

From Data to Complexes

Not Only Point Clouds in \mathbb{R}^{n}

+ Point Clouds:
* Delaunay triangulation
* Čech complexes

* Vietoris-Rips complexes
* Alpha-shapes
* Witness complexes complexes
* Graphs and Complex Networks:
* Flag complexes
+ Functions:
* Sublevel sets

From Data to Complexes

Flag Complex of a Weighted Network:

Let $\mathrm{G}:=(\mathrm{V}, \mathrm{E}, \mathrm{w}: \mathrm{E} \rightarrow \mathbb{R})$ be a weighted undirected graph representing a network:

From Data to Complexes

Flag Complex of a Weighted Network:

From Data to Complexes

Flag Complex of a Weighted Network:

$$
\varepsilon=1
$$

From Data to Complexes

Flag Complex of a Weighted Network:

$$
\varepsilon=2
$$

From Data to Complexes

Flag Complex of a Weighted Network:

$$
\varepsilon=3
$$

From Data to Complexes

Sublevel Sets of Functions

Given a function $f: D \longrightarrow \mathbb{R}$,

- Step 1:

Transform $f: D \rightarrow \mathbb{R}$ into a function $F: K \rightarrow \mathbb{R}$ defined on a simplicial complex K
E.g. if D is a point cloud, construct from it a simplicial complex K and define F as

$$
F(\sigma):=\max \{f(v) \mid v \text { is a vertex of } \sigma\}
$$

+ Step 2:
Build the collection $\left\{K^{r}\right\}_{r \in \mathbb{R}}$ of the sublevel sets of F defined as

$$
K^{r}:=\{\sigma \in K \mid F(\sigma) \leq r\}
$$

Notice that K^{r} is a simplicial complex whenever: if τ is a face of σ then $\mathrm{F}(\tau) \leq \mathrm{F}(\sigma)$

From Data to Complexes

Sublevel Sets of Functions

Given a function $F: K \rightarrow \mathbb{R}$,

$$
K^{r}:=\{\sigma \in K \mid F(\sigma) \leq r\}
$$

From Data to Complexes

Sublevel Sets of Functions

Given a function $F: K \rightarrow \mathbb{R}$,

$$
K^{r}:=\{\sigma \in K \mid F(\sigma) \leq r\}
$$

From Data to Complexes

Sublevel Sets of Functions

Given a function $F: K \rightarrow \mathbb{R}$,

$$
K^{r}:=\{\sigma \in K \mid F(\sigma) \leq r\}
$$

Bibliography

General References:

- Books on TDA:
* A. J. Zomorodian. Topology for computing. Cambridge University Press, 2005.
\% H. Edelsbrunner, J. Harer. Computational topology: an introduction. American Mathematical Society, 2010.
* R. W. Ghrist. Elementary applied topology. Seattle: Createspace, 2014.
- Papers on TDA:
* G. Carlsson. Topology and data. Bulletin of the American Mathematical Society 46.2, pages 255-308, 2009.

Today's References:

- Simplicial Complexes:
* J. R. Munkres. Elements of algebraic topology. CRC Press, 1984.
- From Data to Complexes:
* H. Edelsbrunner, Geometry and Topology for Mesh Generation. Cambridge University Press, 2001.
* V. de Silva, G. Carlsson. Topological estimation using witness complexes. SPBG 4, pages 157-166, 2004.
* A. Zomorodian, Fast construction of the Vietoris-Rips complex. Computers \& Graphics 34.3, pages 263-271, 2010.
\% H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Science \& Business Media, 2012.

